

HYPE Game- Clear the Court!

Hope for Youth, Inc // gethype.org // @gethype.inc

STEAM
Connection:

Why is it important to give very clear instructions? Have you ever been given
unclear instructions and ended up doing the wrong thing?

In this game, the players will have to debug the program by using a code to
give clear instructions.

Suggested Gameplay
Have fun in physical play game mode where you use a large grid or the ground such as:

• An outside painted chess board.
• Grids in your floor tiles at home.
• Make your own masking tape grids one the floor in your living room or den.
• Draw a chalk grid outside.
• Want to play without the space? Use a board from another game or the handout

included!

Have 2 friends or family members join you! Determine who will have each role for the first
round. Not sure how to pick? Try Paper, Scissors, Rock. If you are playing with 2 players instead
of 3, either player can be the Developer.
Role 1: The Developer (who writes the program) - Your developer will setup the bug(s) before
gameplay.
Role 2: The Tester (who instructs the Bot and looks for bugs) - Your tester will create the code
to remove bugs.
Role 3: The Bot (who runs the program) - Your bot will follow the code to remove bugs.

Objective: Resources Needed:
Physical Play

• To use code to navigate the grid and

“debug” the program. Clearing the court of
all the balls means the programmer has

successfully debugged the program!

To Win:
• A Tester must reach 5 points to win!

• Bugs: Basketball Balls (or any small
object)

• Program Grid: Masking tape, chalk floor
tiles or outdoor board (5x9 suggested)

• Clipboards
• Handheld whiteboards/Paper
• Whiteboard marker/Pens

Handout Play

• Your Court: Program Grid Handout
• Your Game Pieces Handout
• Scissors

 2

• Handheld whiteboards/Paper
• Whiteboard marker/Pens

Vocabulary

1. Developer- an individual that builds and create software and applications
2. Programmer- make, test and troubleshoot the coding languages within a software application to

make sure it runs successfully
3. Bot- a software application programmed to execute specific tasks as part of another computer

program or to simulate human activity
4. Debugging- the process of finding and fixing errors or bugs in the source code of any software
5. Programming language- a language that allows people to write specific commands to be

executed on a computer

Pre-Game Reflection

1. Have you ever used a computer program or app that had a glitch or bug? What did that look like?
How did you know there was a problem or an error? What did you (or an adult) have to do to
clear the problem or fix the glitch?

2. Sometimes programmers create updates to add new features or functions to a program or app.
Updates can also debug a program. What was the last program or app you used that needed an
update?

3. What happens if a program is not debugged or you don’t update a program?
4. Look up the specs of your favorite digital game or app (the app store or any device is a great spot

to look). Review the information to find update history. When was the program created? How
many updates have there been since the program’s release?

Connectivity Activity

1. Setup: The Developer(s) will be tasked to place your bug (ball) anywhere on either
side of the court. The starting position for the bot (player) should be at the
midcourt line of the grid (the court) on the side opposite of the ball (see setup
examples below). [If you are playing using the Handouts, cut the game pieces out to
play accordingly.]

2. The tester should create a code, only using the programming language of arrows, to

help the bot navigate to the bugs to remove them. The tester has 30 seconds to
write a code down.

 3

Your code of arrows for Ex. 1 should look something like this:

There are multiple codes that will navigate the bot to the bug on the program grid.
Below you can see alternative codes that would also debug this program. Use your
finger to follow your player from the starting position to the ball and test out these
alternative codes!

3. Standing at the midcourt starting position, the player that is assigned to be the bot

should be given the written code. Only using the instructions given, the bot should
follow the arrows of the code to navigate to the bug. If the bot end in the same
square as the bug, pick it up to clear the court! See below how the first code
navigates to the bug in 3 moves.

*The tester cannot change the code once the bot starts to move!

 4

4. Did you clear the bug? Each correct code is a point! If the bot doesn’t end in the
same square as the bug, the tester does not get the point.

5. Now, take turns! Rotate roles. The next tester must come up with a new code in 30
seconds to clear the court. If a code is repeated, the tester’s turn is over. The bug
and bot should start in the same place until a tester reaches 5.

More Gameplay Examples

 5

Level Up!

Is this too easy? Try any of these ideas to make the game more challenging.

Add obstacles.

• Opponents or obstacles represent stationary items that can go anywhere on your grid. Add
opponents to the court for your bot to navigate around. The more obstacles you place, the more
challenging the code needs to be.

Increase the number of bugs

• Place more than 1 bug. See if you can clear all of the bugs with one long code. Can you do it on
your first try?

Playing solo? Time yourself.

• Using multiple bugs, a tester should time their first round of debugging. Keeping the bugs in the
same locations, challenge yourself to create a code the clears the bugs out faster.

Who’s faster?

• With 3+ players, designate the Developer. Setup your program grid with multiple bugs and/or
obstacles. Have all other players start writing a debugging code simultaneously. The Developer
should be watching to determine the order that they finish writing the code. Starting with the
code that was written the fastest, have a bot test each code. Which successful code was the
fastest one written?

 6

Your Game Pieces

 7

Intentionally Blank

 8

The Court: Your Program Grid

